
 
 

Blocking in Randomized Evaluations 

Motivation 

Most OES projects involve randomized evaluations, where our researchers work with agency 
partners to assign participants to different conditions using lottery-like mechanisms. These 
mechanisms give us the best chance of knowing that any differences we see between groups are 
due to our intervention, not confounding factors. 

Whenever possible, we incorporate background information about participants directly into our 
designs. This helps minimize our estimation error and decrease the uncertainty around our 
estimates of treatment effects. By blocking on prognostic pre-treatment covariates, we ensure 
that our experiments are as precise as possible, and that their results are indicative of actual 
causal effects – not just differences at baseline. 

What to Block On 

Blocking involves creating homogeneous subsets of the experimental units, then randomly 
assigning treatments within those subsets, called blocks. The blocks should be created from 
quantities that are pre-treatment and prognostic as to the outcomes of interest. Often, the single 
best quantity on which to block is the outcome measure at baseline, or in a prior period. By 
blocking on quantities that are strongly prognostic of the outcome, we are, by proxy, helping 
ensure that our treatment and control conditions are good substitutes for what would have 
happened had each unit received the other condition. Additionally, if we plan to estimate 
treatment effects within subgroups, blocking on the subgroup variable can promote high precision 
and low estimation error for the subgroup analysis.   

Depending on the nature of the prognostic variables, we might block on (a) a small number of 
discrete covariates, or (b) on any number of discrete or continuous covariates (up to limits 
imposed by the sample size). 

Two Types of Blocking 

Blocking on a Small Number of Discrete Variables 

To illustrate the case of a small number of discrete covariates, we suppose we have 100 doctors, 
50 in hospital 𝐴 and 50 in hospital 𝐵; the two hospitals have very different patient populations.  1

We will assign half the doctors to receive reminder letters, and the other half to a 
business-as-usual, no-reminder condition. If we randomly assign half the doctors to reminders, we 

1 We show similar examples at https://gsa-oes.github.io/sop/, §4.4. 
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might get an assignment that is unbalanced in its counts. For example, below, 28 of the 𝐵 doctors 
are assigned to letters, but only 22 of the 𝐴 doctors are. 

Hospital  Letter  No Letter 

A  22  28 

B  28  22 

 

By blocking on hospital, then randomly assigning half the doctors within each hospital to letters, 
we ensure that our treatment conditions have the same distributions of 𝐴 and 𝐵 doctors. Below, 
the letter and no letter conditions each have 25 doctors from each hospital: 

Hospital  Letter  No Letter 

A  25  25 

B  25  25 

 

By ensuring that the two conditions have the same distributions of the important prognostic 
factor of hospital, we minimize the estimation error and maximize the precision of our treatment 
effect estimates. 

For examples from OES work, consider project 1903 on wildfire risk in Montana, in which we 
exact-blocked on county and risk category. Similarly, in project 1808 on residential energy use, we 
exact-blocked on apartment size and the presence or absence of baseline usage data. 

Blocking on Several (Possibly Continuous) Variables Using a Distance Metric 

Often we have many prognostic factors, both discrete and continuous, that we want to balance 
between our treatment and control groups. In these cases, we will create blocks of units that look 
like each other across the set of covariates. This procedure involves summarizing many covariate 
differences into a single “distance” metric, creating blocks using that metric, then randomizing 
within the blocks. In this case, blocks may not be perfectly homogeneous. 

Suppose that our hospitals vary in the average age of patients, which then impacts whether 
reminder letters work. We can block doctors on both average patient age and an indicator for 
hospital, creating pairs of units that are similar on both, then randomizing within pairs.  This 2

requires quantifying tradeoffs between patient age and hospital into a single metric. We prefer 
blocks of units that are like each other in both attributes, but in some cases, we may be willing to 
tolerate slight heterogeneity in one variable for more homogeneity on the other.  Below we 
incorporate both predictors in a blocking algorithm before assigning doctors to treatments. After 

2 We typically block on the Mahalanobis distance between units, or use a similar dimension-reduction 
technique. 
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doing so, we can see that both factors, age and hospital, are well-balanced across the two 
conditions.  The figure shows the distributions of average patient ages for the two conditions, and 
the table shows that the hospital counts are balanced. 

 

Hospital  Letter  No Letter 

A  25  25 

B  25  25 

 

What Not to Block On 

If you have quantities that are unrelated to the outcomes of interest, blocking on them will not 
improve the design. However, even if you block on random noise, the random assignment within 
blocks preserves features like the unbiasedness of the difference in means estimator. 

If you have a prognostic covariate, and you create blocks that tend to be dissimilar on that 
covariate, the blocked design can have more variance around the treatment effect than an 
unblocked design. Avoid making blocks that are strongly heterogeneous.  
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Attrition 

In some cases, we are concerned about attrition in small blocks, particularly when the treatment 
probability varies across blocks.  Estimators like the blocked difference-in-means estimator 
require a treatment effect within each block; if there are no treated or no control units in a block, 
then the block-level treatment effect cannot be estimated.  For such estimators, blocks should be 
large enough so that the treatment effect and its variance can be estimated. 

However, if the treatment probability is constant across blocks, the treatment effect can still be 
estimated, for example, with the Lin estimator.  The attrition itself may introduce bias, but the 
blocked design still retains a precision advantage over the unblocked one. 

Analysis & Reporting 

When the probability of treatment is the same within each block, three common estimators 
perform similarly: the simple difference in means, regression with block indicators, and adjusting 
for block membership using the Lin (2013) estimator. The Lin estimator tends to outperform the 
others in power. 

However, if the probability of treatment varies across blocks, we account for this variation. For 
example, suppose we had 70 doctors from 𝐴 hospitals and 30 from 𝐵 hospitals, but we will select 
20 doctors from each for treatment. Or, suppose we have 50 doctors from each hospital type, but 
only 10 𝐴 doctors will be selected, while 20 𝐵 doctors will be selected. 

In such cases, we weight block-level estimates of the treatment effect by the sizes of the blocks. 
Then, the difference in means estimator (or a regression equivalent) will be unbiased for the 
average treatment effect and also for the standard error around that effect. An “interaction 
weighted” estimator performs similarly.  On the other hand, incorporating block-level indicators 
into a regression model will not correctly weight the block-level estimates, leading to bias and 
imprecision. 

When we report results from a blocked experiment, we prefer the interaction estimator of Lin 
(2013). In that estimator, which includes recentered indicators for blocks interacted with the 
covariates, the coefficient on the treatment indicator estimates the treatment effect averaged 
over the blocks.  Reporting this average estimate circumvents the need to specify a particular 
block when producing a predicted outcome for the treatment condition (which is our preferred 
approach in graphs).  
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Example Code 

To create blocks on a small number of discrete covariates, we tend to use the randomizr package 
in R. From the example above, if the data are in df, and we want to randomize within hospitals and 
attached the assignments to the data: 

df$blocked_assg <- block_ra(blocks = df$hospital) 

Then, we can estimate the average treatment effect with the Lin estimator via  

estimatr::lm_lin(Y ~ blocked_assg, covariates = ~ hospital, data = df) 

To create blocks on several numeric covariates, the blockTools package takes the blocking 
variables and an ID variable. It first creates the blocks, then assigns conditions within them: 

blocks_out <- block(df, id.vars = "id", block.vars = c("hosp_A", "age")) 
assg_out <- assignment(blocks_out) 

Then, we can estimate the average treatment with our preferred standard errors via 

df$blocked_assg <- extract_condition(assg_out, df, id.var = “id”)   # as of blockTools 0.6-4 

estimatr::lm_robust(Y ~ blocked_assg, data = df) 

We prefer a non-interactive model here, since (1) we will have equal assignment probabilities 
across blocks and (2) linear dependence will preclude the estimation of coefficients for every 
condition-times-block interaction.  
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